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Reinforcement Learning Overview
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* Goal: maximize expected future rewards
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Steve Brunton, Data Driven Science & Engineering, Chapter 11



Value and Policy — Main Idea
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The Game of Go
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* How to effectively search through
an intractable space?

* 19x19 grid ancient board game

* Search space complexity:
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AlphaGo

Defeated 18x Go Champion Lee Sedol in 2016

1:21:16




AlphaGo — High Level Training Pipeline
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AlphaGo — SL Policy Network

Policy network
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Arch: 12-layer CNN

Training data: 30M positions from expert games
* |nput: 19x19x48
* Objective function: max. likelihood by SGD
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Extended Data Table 2 | Input features for neural networks

Feature # of planes  Description o o
5 Plyes sone oppoen s ey Results: 57% accuracy on test set (44% state of the art)
Ones 1 A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8  Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8  Number of liberties after this move is played

Ladder capture 1 Whether a move at this point is a successful ladder capture

Ladder escape 1 Whether a move at this point is a successful ladder escape

Sensibleness 1 Whether a move is legal and does not fill its own eyes

Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

Feature planes used by the policy network (all but last f

eature) and value network (all features).

Training time: 4 weeks on 50 GPUs
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AlphaGo — Rollout Policy

Rollout policy SL policy network

P, P,

Human expert positions

Extended Data Table 4 | Input features for rollout and tree policy

Feature # of patterns  Description

Response 1 Whether move matches one or more response pattern features
Save atari 1 Move saves stone(s) from capture

Neighbour 8 Move is 8-connected to previous move

Nakade 8192 Move matches a nakade pattern at captured stone

Response pattern 32207 Move matches 12-point diamond pattern near previous move
Non-response pattern 69338 Move matches 3 x 3 pattern around move

Self-atari 1 Move allows stones to be captured

Last move distance 34  Manhattan distance to previous two moves

Non-response pattern 32207 Move matches 12-point diamond pattern centred around move

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, >3)

at each intersection of the pattern.

Usage: fast rollout enables narrower search for
moves during simulation

Arch: more simple linear softmax classifier
Training data: 8M positions from expert games
Objective function: max. likelihood by SGD

dlog p, (als)
g X
do
Training time: N/A
Results: 24.2% accuracy on test set
Speed: 2us vs 3ms in SL policy network (1500x faster)



Policy Gradient Theorems
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https://spinningup.openai.com/en/latest/algorithms/vpg.html



AlphaGo — RL Policy Network

 Usage: reinforce current SL policy and will be used
for self-play to generate training data for value
network

 Arch:12-layer CNN

 Training data: 10,000 mini-batches of 128 self-play
games between policy networks

* Objective function: max. rewards z, by policy

\\ /‘? && gradient reinforcement learning

> Aog p,(ars:)
Ap x .
dp

Rollout policy SL policy network RL policy network
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Human expert positions Self-play positions zZ t
 Training time: 1 week on 50 GPUs
 Results: 80% win rate over SL policy network
* Notes:
* They don’t play each other on the same policy



AlphaGo — Value Network

Value network
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Usage: quantify how good a board position is
Arch: 12-layer CNN

Training data: 30 million games of self-play
generated from RL policy network

 Input: 19x19x(48 + 1) (colour to play)
Objective function: min. MSE by SGD

- 8v9(s)
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Training time: 1 week on 50 GPUs



AlphaGo — Quick Recap

* Policy network: guides us to the next best moves
* Value network: quantify the quality of a board position

* Next, they complement these networks to help with search priorities
during game simulations.



AlphaGo — Why Simulation?

With sufficient games are simulated till the end from current
position, we will get an idea which moves likely lead to the most
wins. In the process, they build a search tree recording sequences
of moves and their corresponding winning rates.



Exhaustive Search
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Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) consists of 4 main steps:
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MCTS is run on 48 CPUs in 40 threads; the policy and value evaluation
run on 8 GPUs.



MCTS — Selection & Expansion

Goal: to prioritize most promising moves for further simulations.
This allows finding good moves with fewer games played

a Selection

b

Expansion

a; =argmax(Q(s,a)+ u(s,a)) - Q: exploitation; u: exploration
a

P(s,a)

u(s,a) o —1 NG

P(s,a) = p,(als) - Policy Network: Probability taking action a in state s

N(s,a)=zn: 1(s,a,i) - Number of time action a has been selected in state s
i=1

Q(s,a)=

N(l ) Z 1(s,a4,i)V(s}) - The quality of being in state s and taking action a

V(sy)=(1—A)vg(s.) + Az, - Value Network: how advantageous is it to be in this position



MCTS — Evaluation & Backup

c Evaluation d Backup

Lt . * In the evaluation, simulate the rest of the game
N using rollout policy starting from the leaf node until
e o7 et o7 th‘e end of the game to see whether it loses or
/ wins.

V{,(ﬁg) ﬁ H 3}_{ « After the evaluation, we know our moves win/lose

t statistics. In the backup phase, update Q(s,a) to
e o ! remember how well to make a move from the
’(iﬁ) 31 ﬁ i‘g game results and the leaf node’s value function.
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MCTS — Results

V(SL) = (1 — /\)VQ(SL) + )\ZL

Extended Data Table 7 | Results of a tournament between different variants of AlphaGo

Short Policy Value Rollouts Mixing Policy Value Elo

name network network constant GPUs GPUs rating
Qrup Do Vg P A =05 2 6 2890
Oyp Do Vg -] A=0 2 6 2177
Orp Po - Pl A=1 8 0 2416
Oy [p-] Vo Do A=0.5 0 8 2077
Oy [pr] Vo - A=0 0 8 1655
Q. [pr] - D A=1 0 0 1457
oy, [Po - -] - 0 0 1517

Evaluating positions using rollouts only (a., a,), value nets only (ay, a,), or mixing both (ang, an); either using the policy network p,(ang, v, o), Or no policy
network (ayp, avp, 04p), that is, instead using the placeholder probabilities from the tree policy p, throughout. Each program used 5 s per move on a single machine
with 48 CPUs and 8 GPUs. Elo ratings were computed by BayesElo.
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