
Mastering the game of Go with deep neural 
networks and tree search

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf

Hieu Nguyen – Godaddy Inc.

2022-02-18

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf


Reinforcement Learning Overview

• Data: from interacting with the environment {s,a}t

• Model:

• Goal: maximize expected future rewards

Steve Brunton, Data Driven Science & Engineering, Chapter 11



Value and Policy – Main Idea

+1

-1

Start

0.81 0.88 0.95 +1

0.69 0 0.218 -1

0.28 0.03 0.008 -0.2



The Game of Go

Game of Go:

• 19x19 grid ancient board game

• Search space complexity: ~10^170

AI Challenge:

• How to effectively search through 
an intractable space? 



AlphaGo

Defeated 18x Go Champion Lee Sedol in 2016



AlphaGo – High Level Training Pipeline



AlphaGo – SL Policy Network

• Arch: 12-layer CNN
• Training data: 30M positions from expert games

• Input: 19x19x48
• Objective function: max. likelihood by SGD

• Training time: 4 weeks on 50 GPUs
• Results: 57% accuracy on test set (44% state of the art)



AlphaGo – Rollout Policy

• Usage: fast rollout enables narrower search for 
moves during simulation

• Arch: more simple linear softmax classifier
• Training data: 8M positions from expert games
• Objective function: max. likelihood by SGD

• Training time: N/A
• Results: 24.2% accuracy on test set
• Speed: 2us vs 3ms in SL policy network (1500x faster)



Policy Gradient Theorems

Main idea:
- Compute how much the expected rewards changes 

wrt to how much each P changes
- Backprob these partial derivatives to the NN, the 

weights will update to produce new Ps such that the 
E[R] is maximized

https://spinningup.openai.com/en/latest/algorithms/vpg.html



AlphaGo – RL Policy Network

• Usage: reinforce current SL policy and will be used 
for self-play to generate training data for value 
network

• Arch: 12-layer CNN
• Training data: 10,000 mini-batches of 128 self-play 

games between policy networks
• Objective function: max. rewards zt by policy 

gradient reinforcement learning

• Training time: 1 week on 50 GPUs
• Results: 80% win rate over SL policy network
• Notes:

• They don’t play each other on the same policy



AlphaGo – Value Network

• Usage: quantify how good a board position is
• Arch: 12-layer CNN
• Training data: 30 million games of self-play 

generated from RL policy network
• Input: 19x19x(48 + 1) (colour to play) 

• Objective function: min. MSE by SGD

• Training time: 1 week on 50 GPUs



AlphaGo – Quick Recap

• Policy network: guides us to the next best moves

• Value network: quantify the quality of a board position

• Next, they complement these networks to help with search priorities 
during game simulations. 



AlphaGo – Why Simulation?

With sufficient games are simulated till the end from current 
position, we will get an idea which moves likely lead to the most 
wins. In the process, they build a search tree recording sequences 
of moves and their corresponding winning rates.



Exhaustive Search



Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) consists of 4 main steps:

MCTS is run on 48 CPUs in 40 threads; the policy and value evaluation 
run on 8 GPUs.



MCTS – Selection & Expansion

Goal: to prioritize most promising moves for further simulations. 
This allows finding good moves with fewer games played

- Policy Network: Probability taking action a in state s

- Number of time action a has been selected in state s

- The quality of being in state s and taking action a

- Value Network: how advantageous is it to be in this position

- Q: exploitation; u: exploration



MCTS – Evaluation & Backup

• In the evaluation, simulate the rest of the game 
using rollout policy starting from the leaf node until 
the end of the game to see whether it loses or 
wins.

• After the evaluation, we know our moves win/lose 
statistics. In the backup phase, update Q(s,a) to 
remember how well to make a move from the 
game results and the leaf node’s value function.



MCTS – Results



References/Resources:

- David Silver RL Series, DeepMind
- Steve Brunton, uWashington – Data Driven Science & Engineering
- Pascal Poupart, uWaterloo – CS885: Reinforcement Learning
- Martin Lysy, uWaterloo – Stats946: Advanced Computational Statistics


	Slide 1: Mastering the game of Go with deep neural networks and tree search
	Slide 2: Reinforcement Learning Overview
	Slide 3: Value and Policy – Main Idea
	Slide 4: The Game of Go
	Slide 5: AlphaGo
	Slide 6: AlphaGo – High Level Training Pipeline
	Slide 7: AlphaGo – SL Policy Network
	Slide 8: AlphaGo – Rollout Policy
	Slide 9: Policy Gradient Theorems
	Slide 10: AlphaGo – RL Policy Network
	Slide 11: AlphaGo – Value Network
	Slide 12: AlphaGo – Quick Recap
	Slide 13: AlphaGo – Why Simulation?
	Slide 14: Exhaustive Search
	Slide 15: Monte Carlo Tree Search (MCTS)
	Slide 16: MCTS – Selection & Expansion
	Slide 17: MCTS – Evaluation & Backup
	Slide 18: MCTS – Results
	Slide 19: References/Resources:

