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Overview

LDA is one of the most important topic models in practice. On a high level, it provides a generative model
that describes how the documents in a dataset are generated; i.e. how words are sampled from multiple
topics to construct a document. This generative process follows a bag of words (BOW) assumption. Hence,
the order in which the word occurs is not taken into account.

The core of topic modeling is to analyze unlabeled text data, discover the unknown number of topics and
topic distribution in a unsupervised way. This is achieved by making use of statistical inference.

Some definitions before we move on:

e A dataset contains a set of D documents
e Document: a probability distribution over the topics

e Topic: a probability distribution over the words

The purpose of this note is to open the box to explore the mathematical details that enable LDA’s effective
statistical inference as well as optimization. The most 2 popular approaches to go about model parameter
estimation in LDA are Gibb Sampling and Variational E-M algorithm. This note focuses on deriving
model parameter estimation using Variational E-M algorithm.

LDA Model Details

The primary statistical optimization problem for LDA is to use E-M algorithm to compute the values of
model parameter «, ® such that the likelihood of the observed data p(W | a, @) is maximized. Unfortunately,
the exact inference is NP hard. Hence, alternatively we will make use of Jensen’s inequality to derive the
variational lower bound L(g, o, @), then variational EM algorithm will be used to optimize it.

Let’s derive the lower bound of the likelihood function function:

log(p(W | o, @)) = log Zp(W, Z,0|a,®) (Marginalize over latent variables)
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There is a very neat proof for the following:

W,Z,0|a,®)

B p(
C =log(p(W |, ®)) — Eg(9)q(z)log] q(Z)q(0) ]

= KL(q(0)q(Z) || (6, Z|W))

Hence , we now have:

p(W,Z,0]|a, D)

log(p(W |, @)) = Eq6yq(z)l0g] q(Z)q(0)

1+ KL(q(0)q(Z) || p(0, ZIW))

= L(q,a,®) + KL(q(0)q(Z) || p(0, Z|W))
Where:

e ¢(Z) and ¢(#) are some known lower bound distributions over the latent variables, i.e. variational
Gaussian distribution

We can see that maximizing log(p(W | «, ®)) is equivalent of minimizing KL(q(0)q(z) || p(0, z|w))

Next, let’s consider the posterior distribution of the latent variables Z, 6 given the observed data W and
the model parameter a, ®. Note that this is the core statistical inference problem in LDA.

D Ng T
p(0,Z| Wi, @) < p(0,Z, W |, ®) = [[ p(0alcr) [ [] p(zanl0a)p(wanl|zan; étw)  (0)
d=1 n=1t=1

Where:

e W: the data, a set of documents, each of which has N; words

e Z: latent variable which represents the topic of each word

o ®: a T x Ny word probability matrix for each topic (row) and each word (column)

e 0: latent variable which represents the distribution over the topics for each document
e 04: the probability distribution over topics for document d

o Wgp: the nth word in document d; wg, € {1,..., Ng}

o Zgn: topic of the nth word in document d; z4, € {1,...,T}
. T ap—

o p(0a) ~ Dir(fala) = & [T—, 05

 p(zanlfa) = bz,

. p(wdn|zdn) = (I)Zdnwdn:
Where: ¢4, > 0 and Y ¢y = 1



Note that the latent variables Z,0 are not observable and being uncovering in the documents of texts via
LDA model.

The further derivation of log likelihood function of the mixtures:
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E-step: 6 and Z

Objective: KL(q(Z)q(0) || p(0,Z|W)) — min
q(9)q(2Z)

Find ¢(9)

Consider the joint log likelihood function:

D T Ny T
logp(W,0,Z | a, D) = Z Z ar — Dlog(04) + Z Z Zdn = t](logfas + logdiw,, )] + const (1)
d=1 t=1 ne1 t=1

Note that, w.r.t (), Zn 1 31 1[2dn = t)logdtw,, in (1) is a constant so we can ignore it the below
derivation of log[g(6)].

loglq(0)] = Eqz)log [p(Z,0, W)] + Cy
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Now take the exp both side to get ¢(8):
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Note that the update rules for ¢(6) depends on 74, which depends on zg4,. So to compete the E-step we will
also need to find updating rule for ¢(Z)

Find ¢(Z)

Similarly, W.r.t ¢(Z) Zthl(at — 1)log(04:) in (1) is a constant so we can ignore it the below derivation.

logla(Z)] = Eqg)log [p(Z,0, W)] + C2
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Take exp both sides we have the product over independent distribution as following:
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Where:
q(zdn = t) o8 6$p{]Eq(g) [logedt] + lOg(btwdn}
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Now that we know the update procedure for ¢(Z), from here we also know the value of v4,, we can iterate
through a loop to update the values for 6, Z.



M-step:

Objective: Eqg)q(z)[log(p(W, Z,0))] — m(%))( such that:
q

e since ¢y, is a probability: ¢, > 0,Vt,w. This is already been satisfied because it is under the log
function as we see above.
o The probability distribution should sum up to 1 over vocal size V: 25:1 Gy = 1,V

As we already know, optimizing an objective function given a set of constraints, lagrange multiplier is the
way to go.
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Taking derivative w.r.t ¢4, then set it to 0 to solve for ¢y, we get:
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de Vi [Wan = w]
sum over all possible words in our data W

brw =
(4)

Zd,n 737}, [wdn = ’LU}
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Summary

o E-Step: keep @ fixed, we iteratively update 6 and Z until converges using KL(q(Z)q(0) || p(6, Z|W))

e M-step: keep 6 and Z fixed, we iteratively update ® by maximizing Eqg)q(=)[log(p(W, Z,0))]



Construct EM Algorithm

Input

e T: number of topics
e D: number of documents with corpus size Ny

e V: the size of the overall text corpus
Output

e Model params: 0,7Z,®

E-step:

Init:

o Ny~ Poi(e)

o Y, =1/T,VteT,we Ny

o af + Zn 179, == C/T + Ng/K,Vt € T, where C is a constant. Choose C' = 50
e Y =0, VieT,weV

e loglikelihood ly := 0

e Loop starts at index ¢ := 0
Updating Loop

e ford=1toD:

— forn =1 to Ng:
* fort =1 to T:

D Ny
q(0"th) = H (04), where q(64) ~ Dir(f4|at + Z i)
d=1 n=1
. Brw,, exp(E, i y[logh:
a2t =t) =45 = wan 2P (Ey0s,)[10962:])

T i
D=1 by Wan ea:p(Eq(gst, ) [lo'gedt' )

until 8, Z converges to 0*,Z*



M-step:
e ford =1 to D:

—fort=1toT:
* forw =1 to V:

t;1
i+1 Zd,n ,Yd’r’LL [wdn = U)]
tw "
b Zw/,d,n 727711 [wd” = w/]

Update loglikelihood lnew = loig + Eq(p«yq(z+)loglp(W, Z*,0% | ¢7,,)] Until ¢, converges to ¢j,,

if loglikelihood l,,¢,, converges: return 6%, Z*, ¢*

else: back to E-step

Prediction

Objective: KL(q(04+)q(Zg~)

|04+, Zg« |W; a, @) — min

q(0a+)q(zax)

For the new document, using the model parameters a, ® that we found through E-M we wanna predict:

e the new value for Z, i.e. assign a topic for each words

e the new value for 6, i.e. the global topic distribution of the document

Extension
1. Treat ® as a random variable following DIR(5)

This time we consider ® as a random variable which follows DIR(3). Now the joing probability distribution
becomes:

D Ng T
p(0,2,W|a,®) = [[ p0ala) [T [] p(2anl00)p(bew|B)p(wan| 2, dew)
d=1 n=1t=1

2. Topic Correlation using Logistic Normal Distribution

https://www.ic.unicamp.br/~tachard/docs/corrlda.pdf

3. Dynamic Topic Modeling

https://dl.acm.org/doi/10.1145/1143844.1143859


https://www.ic.unicamp.br/~tachard/docs/corrlda.pdf
https://dl.acm.org/doi/10.1145/1143844.1143859

Appendix
I. Bayes’ Theorem

Let 6 be model’s parameter and X be the observed data, the posterior probability distribution of 6 given
the observed data X is defined as follow:

PO X) = joint probability distribution

evidence

(likelihood) (prior)
evidence

General Chain Rule:
P(X,Y)=PX|Y)P(Y)=PY|X)P(X)
P(X,Y,Z)=P(X|Y,Z)P(Y|Z)P(Z)

N
P(Xy,...XN) = HP(Xi|X1,...7Xi,1)

i=1

II. General EM Algorithm

Generally speaking, E-M algorithm is used to solve parameter estimation problems when some data is
missing/not observed (latent variable). This is the main distinction between EM vs traditional MLE
approach. This includes approximating the maximum of a likelihood function (MLE) or the maximum of a
posterior (MAP).

Consider:

o X ={z1,...,xn}
. Z|X ~ pg, 0 €O

 pp belongs to the exponential family (i.e. Gaussian, Beta, Dirichlet, Exponential, Gamma, etc.), which
is the primary assumption for EM algo to work well (idk why this is o).

e Main objective: Op € argmazg pe(X)
ITterative algo:

o the loop: for i in range(0,I)

e init fy € ©

10



o E-step: Q(0,0;) = Ey,[logpe(X, Z|0)]

e M-step: 0,11 € argmaxygQ(6,6;)
Pros:

o likelihood function is guaranteed to increase from one iteration to another
Cons:

e Not guarantee to reach global maximum
o Computational expensive so convergence rate is slow

o works well only when py belong to exponential family

ITI. Jensen’s Inequality

If f(x) is concave (i.e. f(ax + (1 — a)y) > af(z) + (1 — a)f(y)), then for any random variable X with
corresponding probability density function (pdf) f(X):

FEX]) = E[f(X)]
IV. Kullback Leibler Divergence (KL Divergence)

KL divergence is used to measure the difference between 2 probability distributions. Note that this is not
computed based on parameter wise difference.

Example:
o KL[N(0,1)]| N(1,1)] = 0.5 while their parameter wise difference is 1

o KL[N(0,100) || N(1,100)] = 0.005 while their parameter wise difference is 1

V. Dirichlet Distribution

6 ~ Dir(0| «)

1 I
p(0| :7”9‘“71
( ‘ ) C(Oé) Pl t
Where:

. HtEOaHdZTthl

e Model param a; > 0
Statistics:

o Let ag =) ;o wheret € {1,2,...,T}

. Efg) =2
_ cuaefizjl—aay
. CO'U(Gt,e]‘) = W

11



VI. Variational Inference

It is used to approximate the posterior distribution:

1. Select a famlily of distributions Q: Q = {q|¢(Z) = Hle qi(Z;)}; ie:

2 0 0 ... 0 0
0 620 ... 0 0

Q ~ N(u, o )
o5, 0

0 00 0 0 o2

2. Next we will try to approximate the full posterior p(Z) with some variational distribution ¢(Z):

KLg(Z) [|p(2)] = mingeq

Then apply Coordinate descend:

KLla(2)|1p(Z)] = ming,

KL[q(Z)||p(Z2)] — miny,

KLg(Z) || p(2)] = ming,

Example:

(21, Z2) = q(Z1)q(Z2)

p(Z1,Z3) ~ N(0,%)

o220z ~ N0, (T )

02
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